
Chapter 2
Limitations of Linear Regression Applied
on Ecological Data

This chapter revises the basic concepts of linear regression, shows how to apply
linear regression in R, discusses model validation, and outlines the limitations of
linear regression when applied to ecological data. Later chapters present methods
to overcome some of these limitations; but as always before doing any complicated
statistical analyses, we begin with a detailed data exploration. The key concepts to
consider at this stage are outliers, collinearity, and the type of relationships between
the variables. Failure to apply this initial data exploration may result in an inappro-
priate analysis forcing you to reanalyse your data and rewrite your paper, thesis, or
report.

We assume that the reader is ‘reasonably’ familiar with data exploration and lin-
ear regression techniques. This book is a follow-up to Analysing Ecological Data
by Zuur et al. (2007), which discusses a wide range of exploration and analyt-
ical tools (including linear regression and its extensions), together with several
related case study chapters. Other useful, non-mathematical textbooks containing
regression chapters include Chambers and Hastie (1992), Fox (2002), Maindonald
and Braun (2003), Venables and Ripley (2002), Dalgaard (2002), Faraway (2005),
Verzani (2005) and Crawley (2002, 2005). At a considerable higher mathematical
level, Ruppert et al. (2003) and Wood (2006) are excellent references for linear
regression and extensions. All these books discuss linear regression and show how
to apply it in R. Other good, but not based on R, textbooks include Montgomery and
Peck (1992), Draper and Smith (1998) and Quinn and Keough (2002). Any of the
above mentioned texts using R can be also used to learn R, but we highly recom-
mend the book from Dalgaard (2002) or for a slightly different approach, Crawley
(2005). However, even if you are completely unfamiliar with R, you should still be
able to pick up the essentials from this book and ‘learn it as you go along’. It is not
that difficult and, once exposed to R, you will never use anything else.

Although various linear regression examples are given in this chapter, a com-
plete example, including all R code and aspects like interaction, model selection
and model validation steps, is given in Appendix A.
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Statistics for Biology and Health, DOI 10.1007/978-0-387-87458-6 2,
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12 2 Limitations of Linear Regression Applied on Ecological Data

2.1 Data Exploration

2.1.1 Cleveland Dotplots

The first step in any data analysis is the data exploration. An important aspect
in this step is identifying outliers (we discuss these later) and useful tools for
this are boxplots and/or Cleveland dotplots (Cleveland, 1993). As an example
of data exploration, we start with data used in Ieno et al. (2006). To identify
the effect of species density on nutrient generation in the marine benthos, they
applied a two-way ANOVA with nutrient concentration as the response variable
with density of the deposit-feeding polychaete Hediste diversicolor (Nereis diver-
sicolor), and nutrient type (NH4-N, PO4-P, NO3-N) as nominal explanatory vari-
ables. The data matrix consists of three columns labelled concentration, biomass,
and nutrient type. The aim is to model Nereis concentration as a function of
biomass and nutrient. The following R code reads the data and makes a Cleveland
dotplot.

> library(AED); data(Nereis)

R commands are case sensitive; so make sure you type in commands exactly as
illustrated. The data are stored in a data frame called Nereis, which is a sort of
data matrix. Information in a data frame can be accessed in various ways. First, we
need to know what is in there, and this is done by typing the following at the R
prompt:

> names(Nereis)

This command gives the names of all variables in the data frame:

[1] "concentration" "biomass" "nutrient"

The following lines of code produce the Cleveland dotplot in Fig. 2.1A.

> dotchart(Nereis$concentration,

ylab = "Order of observations",

xlab = "Concentration", main = "Cleveland dotplot")

The dotchart function makes the Cleveland dotplot. Note that the arguments
of the dotchart function are typed in over multiple rows. When the code runs
over more than one line like this, you should ensure that the last symbol on such a
line is a slash (\) or a comma (,). So, this works as well:

> dotchart(Nereis$concentration, ylab = "Order of \
observations",

xlab =" \
Concentration", main = "Cleveland dotplot")
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Fig. 2.1 A: Cleveland dotplot for Nereis concentration. B: Conditional Cleveland dotplot of Nereis
concentration conditional on nutrient with values 1, 2 and 3. Different symbols were used, and the
graph suggests violation of homogeneity. The x-axes show the value at a particular observation,
and the y-axes show the observations

In a dotchart, the first row in the text file is plotted as the lowest value along
the y-axis in Fig. 2.1A, the second observation as the second lowest, etc. The x-axis
shows the value of the concentration for each observation. By itself, this graph
is not that spectacular, but extending it by making use of the grouping option in
dotchart (for further details type: ?dotchart in R) makes it considerably more
useful, as can be seen from Fig. 2.1B. This figure was produced using the following
command:

> dotchart(Nereis$concentration,

groups = factor(Nereis$nutrient),

ylab = "Nutrient", xlab = "Concentration",

main = "Cleveland dotplot", pch = Nereis$nutrient)

The groups = factor(nutrient) bit ensures that observations from the
same nutrient are grouped together, and the pch command stands for point charac-
ter. In this case, the nutrient levels are labelled as 1, 2 and 3. If other characters are
required, or nutrient is labelled as alpha-numerical values, then you have to make a
new column with the required values. To figure out which number corresponds to a
particular symbol is a matter of trial and error, or looking it up in a table, see, for
example, Venables and Ripley (2002).

Cleveland dotplots are useful to detect outliers and violation of homogeneity.
Homogeneity means that the spread of the data values is the same for all variables,
and if this assumption is violated, we call this heterogeneity. Points on the far end
along the horizontal axis (extremely large or extremely small values) may be consid-
ered outliers. Whether such points are influential in the statistical analysis depends
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on the technique used and the relationship between the response and explanatory
variables. In this case, there are no extremely large of small values for the vari-
able concentration values. The Cleveland dotplot in Fig. 2.1B indicates that we may
expect problems with violation of homogeneity in a linear regression model applied
on these data, as the spread in the third nutrient is considerable smaller than that
in the other two. The mean concentration value of nutrient two seems to be larger,
indicating that in a regression model, the covariate nutrient will probably play an
important role.

2.1.2 Pairplots

Another essential data exploration tool is the pairplot obtained by the R command

> pairs(Nereis)

The resulting graph is presented in Fig. 2.2. Each panel is a scatterplot of two
variables. The graph does not show any obvious relationships between concentration
and biomass, but there seems to be a clear relationship between concentration and
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Fig. 2.2 Pairplot for concentration, biomass and nutrient. Each panel is a scatterplot between two
variables. It is also possible to add regression or smoothing lines in each panel. In general, it does
not make sense to add a nominal variable (nutrient) to a pairplot. In this case, there are only two
explanatory variables; hence, it does not do any harm to include nutrient
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nutrients, as already suggested by the Cleveland dotplot. More impressive pairplots
can be made by using the panel option in pairs. The help file for pairs is obtained
by typing: ?pairs. It shows various examples of pairplot code that gives pairplots
with histograms along the diagonal, correlations in the lower panels, and scatterplots
with smoothers in the upper diagonal panels.

2.1.3 Boxplots

Another useful data exploration tool that should be routinely applied is the boxplot.
Just like the Cleveland dotplot, it splits up the data into groups based on a nominal
variable (for example nutrient). The boxplot of concentration conditional on nutrient
is given in Fig. 2.3. The following code was used to generate the graph:

> boxplot(concentration ∼ factor(nutrient),

varwidth = TRUE, xlab = "nutrient",

main = "Boxplot of concentration conditional on\
nutrient", ylab = "concentration", data = Nereis)

The varwidth = TRUE command ensures that the width of each boxplot is
proportional to the sample size per level. In this case, the sample size per nutrient
(labelled 1, 2, and 3) is about the same.
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Fig. 2.3 Boxplot of concentration conditional on the nominal variable nutrient. The horizontal
line in each box is the median, the boxes define the hinge (25–75% quartile, and the line is 1.5
times the hinge). Points outside this interval are represented as dots. Such points may (or may not)
be outliers. One should not label them as outliers purely on the basis of a boxplot! The width of
the boxes is proportional to the number of observations per class

2.1.4 xyplot from the Lattice Package

As with the Cleveland dotplot and the pairplot, the boxplot shows that there may
be a nutrient effect: higher mean concentration values for nutrient level 2, but also
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Fig. 2.4 Nitrogen concentration in teeth versus age for each of the 11 whales stranded in Scotland.
The graph was made with the xyplot from the lattice package

less spread for nutrient level 3, indicating potential heterogeneity problems later on.
We now show a more advanced data exploration method. As the Nereis data set has
only two explanatory variables, this method is less appropriate for these data, and
therefore we use a different data set.

Just like rings in trees, teeth of an animal have rings, and from these it is possible
to extract information on how chemical variables have changed during the life of the
animal. Mendes et al. (2007) measured the nitrogen isotopic composition in growth
layers of teeth from 11 sperm whales stranded in Scotland. The underlying aim of
the research was to ‘investigate the existence, timing, rate and prevalence of dietary
and/or foraging location shifts that might be indicative of ontogenetic benchmarks
related to changes in schooling behaviour, movements, environmental conditions,
foraging ecology and physiology’ (Mendes et al., 2007).

Figure 2.4 shows an xyplot from the lattice package. The name lattice is used
in R, but in SPLUS it is called a Trellis graph. It consists of a scatterplot of nitrogen
isotope ratios versus age for each whale. Working with lattice graphs is difficult, and
one of the few books on this topic is Sarkar (2008). One of the underlying questions
is whether all whales have similar nitrogen-age relationships, and the graph suggests
that some whales indeed have similar patterns. The R code to generate the graph in
Fig. 2.4 is
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> library(AED); data(TeethNitrogen)

> library(lattice)

> xyplot(X15N ∼ Age | factor(Tooth), type = "l",

xlab = "Estimated age", col = 1,

ylab = expression(paste(deltaˆ{15}, "N")),

strip = function(bg = 'white', ...)

strip.default(bg = 'white', ...),

data = TeethNitrogen)

The xyplot makes the actual graph, and the rest of the code is merely there to
extract the data. The type = "l" and col = 1 means that a line in black colour
is drawn. Note that the l in type stands for lines, not for the 1 from 1, 2, and 3.
But the 1 for col is a number! The complicated bit for the y-label is needed for sub-
scripts, and the strip code is used to ensure that the background colour in the strips
with whale names is white. It can be difficult to figure out this type of information,
but you quickly learn the coding you use regularly. To make some journal editors
happy, the following code can be added before the last bracket to ensure that tick
marks are pointing inwards: scales = list(tck = c (-1, 0). More data
exploration tools will be demonstrated later in this book.

2.2 The Linear Regression Model

In the second step of the data analysis, we have to apply some sort of model, and the
‘mother of all models’ is without doubt the linear regression model. The bivariate
linear regression model is defined by

Yi = α + β × Xi + εi where εi ∼ N (0, σ 2)

The Yi is the response (or dependent) variable, and Xi is the explanatory (or inde-
pendent) variable. The unexplained information is captured by the residuals εi, and
these are assumed to be normally distributed with expectation 0 and variance σ 2.
The parameters α and β are the population intercept and slope and are unknown. In
practice, we take a sample and use this to come up with estimates a and b and con-
fidence intervals. These confidence intervals tell us that if we repeat the experiment
a large number of times, how often the real (fixed and unknown) α and β are in
the interval based on the confidence bands (which will differ for each experiment!).
A typical choice is the 95% confidence interval. In most cases, β (the slope) is of
primary interest as it tells us whether there is a relationship between Y and X.

So, we take a sample of size N and obtain the estimators a and b plus confidence
intervals. And then, we make a statement on the population parameters α and β.
But this is a big thing to do! You may wonder how it is possible that we can do
this. Well, the magic answer is ‘assumptions’. The fact that you take sample data
and use this to make a statement on population parameters is based on a series of
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assumptions, namely, normality, homogeneity, fixed X, independence, and correct
model specification.

The underlying geometric principle of linear regression is shown in Fig. 2.5 (based
on Figs. 5.6 and 5.7 in Zuur et al. (2007), and Fig. 14.4 in Sokal and Rohlf (1995)).
The data used in this graph is from a benthic study carried out by RIKZ in The Nether-
lands. Samples at 45 stations along the coastline were taken and benthic species were
counted. To measure diversity, the species richness (the different number of species)
per site was calculated. A possible factor explaining species richness is Normal Ams-
terdams Peil (NAP), which measures the height of a site compared to average sea
level, and represents a measure of food for birds, fish, and benthic species. A linear
regression model was applied, and the fitted curve is the straight line in Fig. 2.5. The
Gaussian density curves on top of the line show the probability of other realisations
at the same NAP values. Another ‘realisation’ can be thought of as going back into
the field, taking samples at the same environmental conditions, carry out the species
identification, and again determining species richness per site. Obviously, you will
not find exactly the same results. The normality assumption means that for each NAP
value, we have bell-shaped curves determining the probabilities of the (species rich-
ness) values of other realisations or sub-samples. Homogeneity means that the spread
of all Gaussian curves is the same at all NAP values.
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Fig. 2.5 Regression curve for all 45 observations from the RIKZ data discussed in Zuur et al.
(2007) showing the underlying theory for linear regression. NAP is the explanatory variable, R
(species richness) is the response variable, and the third axis labelled ‘P’ shows the probability of
other realisations
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Multiple linear regression is an extension of bivariate linear regression in the sense
that multiple explanatory variables are used. The underlying model is given by

Yi = α + β1 × X1i + β2 × X2i + . . . + βM × X Mi + εi where εi ∼ N (0, σ 2)

There are now M explanatory variables. Visualising the underlying theory as in
Fig. 2.5 is not possible, as we cannot draw a high dimensional graph on paper,
but the same principle applies. Further information on bivariate and multiple linear
regression are discussed in the examples below and in Appendix A.

2.3 Violating the Assumptions; Exception or Rule?

2.3.1 Introduction

One of the questions that the authors of this book are sometimes faced with is:
‘Why do we have to do all this GLM, GAM, mixed modelling, GLMM, and GAMM
stuff? Can’t we just apply linear regression on our data?’ The answer is always in a
‘Yes you can, but. . .’ format. The ‘but. . .’ refers to the following. Always apply the
simplest statistical technique on your data, but ensure it is applied correctly! And
here is a crucial problem. In ecology, the data are seldom modelled adequately by
linear regression models. If they are, you are lucky. If you apply a linear regression
model on your data, then you are implicitly assuming a whole series of assumptions,
and once the results are obtained, you need to verify all of them. This is called
the model validation process. We already mentioned the assumptions, but will do
this again; (i) normality, (ii) homogeneity, (iii) fixed X (X represents explanatory
variables), (iv) independence, and (v) a correct model specification. So, how do
we verify these assumptions, and what should we do, if we violate some, or all of
them? We discuss how to verify these assumptions using five examples later in this
section with each example violating at least one assumption. What should we do if
we violate all the assumptions? The answer is simple: reject the model. But what do
we do if we only violate one of the assumptions? And how much can we violate the
assumptions before we are in trouble? We discuss this later.

2.3.2 Normality

Several authors argue that violation of normality is not a serious problem (Sokal and
Rohlf, 1995; Zar, 1999) as a consequence of the central limit theory. Some authors
even argue that the normality assumption is not needed at all provided the sample
size is large enough (Fitzmaurice et al., 2004). Normality at each X value should
be checked by making a histogram of all observations at that particular X value.
Very often, we don’t have multiple observations (sub-samples) at each X value. In
that case, the best we can do is to pool all residuals and make a histogram of the
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pooled residuals; normality of the pooled residuals is reassuring, but it does not
imply normality of the population data.

We also discuss how not to check for normality as the underlying concept of nor-
mality is grossly misunderstood by many researchers. The linear regression model
requires normality of the data, and therefore of the residuals at each X value. The
residuals represent the information that is left over after removing the effect of the
explanatory variables. However, the raw data Y (Y represents the response variable)
contains the effects of the explanatory variables. To assess normality of the Y data,
it is therefore misleading to base your judgement purely on a histogram of all the Y
data. The story is different if you have a large number of replicates at each X value.
Summarising, unless you have replicated observations for each X value, you should
not base your judgment of normality based on a histogram of the raw data. Instead,
apply a model, and inspect the residuals.

2.3.3 Heterogeneity

Ok, apparently we can get away with a small amount of non-normality. However,
heterogeneity (violation of homogeneity), also called heteroscedasticy, happens if
the spread of the data is not the same at each X value, and this can be checked
by comparing the spread of the residuals for the different X values. Just as in the
previous subsection, we can argue that most of the time, we don’t have multiple
observations at each X value, at least not in most field studies. The only thing we
can do is to pool all the residuals and plot them against fitted values. The spread
should be roughly the same across the range of fitted values. Examples of such
graphs are provided later. In sexual dimorphism, female species may show more
variation than male species (or the other way around depending on species). In
certain ecological systems, there may be more spread in the summer than in the
winter, or less spread at higher toxicated sites, more spread at certain geograph-
ical locations, more variation in time due to accumulation of toxic elements, etc.
In fact, we have seldom seen a data set in which there was no heterogeneity of
some sort. The easiest option to deal with heterogeneity is a data transformation.
And this is where the phrase ‘a mean-variance stabilising’ transformation comes
from.

Many students have criticised us for using graphical techniques to assess homo-
geneity, which require some level of subjective assessment rather than using one of
the many available tests. The problem with the tests reported by most statistical soft-
ware packages, and we will illustrate some of them later, is that they require normal-
ity. For example, Barlett’s test for homogeneity is quite sensitive to non-normality
(Sokal and Rohlf, 1995). We therefore prefer to assess homogeneity purely based
on a graphical inspection of the residuals.

Minor violation of homogeneity is not too serious (Sokal and Rohlf, 1995), but
serious heterogeneity is a major problem. It means that the theory underlying the
linear regression model is invalid, and although the software may give beautiful
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p-values, t-values and F-values, you cannot trust them. In this book, we will discuss
various ways to deal with heterogeneity.

2.3.4 Fixed X

Fixed X is an assumption implying that the explanatory variables are deterministic.
You know the values at each sample in advance. This is the case if you a priori
select sites with a preset temperature value or if you choose the amount of toxin
in a basin. But if you go into the field, take at random a sample, and then measure
the temperature or the toxin concentration, then it is random. Chapter 5 in Faraway
(2005) gives a very nice overview how serious violation of this assumption results
in biased regression parameters. The phrase ‘biased’ means that the expected value
for the estimate parameter does not equal the population value. Fortunately, we can
ignore the problem if the error in determining the explanatory variable is small com-
pared to the range of the explanatory variable. So, if you have 20 samples where the
temperature varies between 15 and 20 degrees Celsius, and the error of your ther-
mometer is 0.1, then you are ok. But the age determination of the whales in Fig. 2.4
may be a different story as the range of age is from 0 to 40 years, but the error on the
age reading may (or may not) be a couple of years. There are some elegant solutions
for this (see the references for this in Faraway (2005)), but in Chapter 7 we (shortly)
discuss the use of a brute force approach (bootstrapping).

2.3.5 Independence

Violation of independence is the most serious problem as it invalidates important
tests such as the F-test and the t-test. A key question is then how do we identify a
lack of independence and how do deal with it. You have violation of independence
if the Y value at Xi is influenced by other Xi (Quinn and Keough, 2002). In fact,
there are two ways that this can happen: either an improper model or dependence
structure due to the nature of the data itself. Suppose you fit a straight line on a data
set that shows a clear non-linear pattern between Y and X in a scatterplot. If you plot
the residuals versus X, you will see a clear pattern in the residuals: the residuals of
samples with similar X values are all positive or negative. So, an improper model
formulation may cause violation of independence. The solution requires a model
improvement, or a transformation to ‘linearise the relationship’. Other causes for
violation of independence are due to the nature of the data itself. What you eat now
depends on what you were eating 1 minute ago. If it rains at 100 m in the air, it will
also rain at 200 m in the air. If we have large numbers of birds at time t, then it is
likely that there were also large numbers of birds at time t – 1. The same holds for
spatial locations close to each other and sampling pelagic bioluminescence along
a depth gradient. This type of violation of independence can be taken care of by
incorporating a temporal or spatial dependence structure between the observations
(or residuals) in the model.
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The case studies later in the book contain various examples of both scenarios, but
for now we look at a series of examples where some of these important assumptions
have been violated.

2.3.6 Example 1; Wedge Clam Data

Figure 2.6 shows a coplot of biomass (labelled as AFD which stands for ash free dry
weight) of 398 wedge clams (Donax hanleyanus) plotted against length for six dif-
ferent months (Ieno, unpublished data). The data used in this section were measured
on a beach in Argentina in 1997. An initial scatterplot of the data (not shown here)
showed a clear non-linear relationship, and therefore, both AFD and length were
log-transformed to linearise the relationship. Note this transformation is only neces-
sary if we want to apply linear regression. As an alternative, the untransformed data
can be analysed with additive modelling (Chapter 3). The coplot in Fig. 2.6 indicates
a clear linear relationship between AFD and length in all months, and it seems sen-
sible to apply linear regression to model this relationship. Due to different stages of
the life cycle of wedge clams, the biomass-length relationship may change between
months, especially before and after the spawning period in September–October and
February–March. This justifies adding a length–month interaction term. This model
is also known as an analysis of covariance (ANCOVA). The following R code was
used for the coplot (Fig. 2.6) and the linear regression model.
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Fig. 2.6 Coplot of the
wedge clam data during the
spring and summer period.
(The data were taken on the
southern hemisphere.) The
lower left panel contains the
data from month 2, the lower
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left from month 9, and the
upper right of month 12
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> library(AED); data(Clams)

> Clams$LNAFD <- log(Clams$AFD)

> Clams$LNLENGTH <- log(Clams$LENGTH)

> Clams$fMONTH <- factor(Clams$MONTH)

> library(lattice)

> coplot(LNAFD ∼ LNLENGTH | fMONTH, data = Clams)

> M1 <- lm(LNAFD ∼ LNLENGTH * fMONTH, data = Clams)

> drop1(M1,test = "F")

The drop1 command compares the full model with a model in which the inter-
action is dropped, and an F-test is used to compare the residual sum of squares of
both the models (Appendix A):

Single term deletions

Model: LNAFD ∼ LNLENGTH * fMONTH

Df Sum of Sq RSS AIC F value Pr(F)

<none> 6.36 -1622.35

LNLENGTH:fMONTH 5 0.23 6.58 -1618.47 2.7385 0.01906

On the third line of this output (labelled as none), we have the output of the full
model, and the last line shows the output from the model without the interaction.
Note that this model is nested within the full model. The F-statistic shows that
the interaction is significant at the 5% level. However, before trusting the values
obtained by the F-statistic and use the ‘magic’ 5% as rejection level, we need to be
confident that all model assumptions are valid. Hence, we enter the next stage of the
analysis, the model validation.

2.3.6.1 Model Validation

Standard model validation graphs are (i) residuals versus fitted values to ver-
ify homogeneity, (ii) a QQ-plot or histogram of the residuals for normality, and
(iii) residuals versus each explanatory variable to check independence, see Fig. 2.7.
We also need to check whether there are any influential observations. The following
R code was used to generate Fig. 2.7.

> op <- par(mfrow = c(2, 2), mar = c(5, 4, 1, 2))

> plot(M1, add.smooth = FALSE, which = 1)

> E <- resid(M1)

> hist(E, xlab = "Residuals", main = "")

> plot(Clams$LNLENGTH, E, xlab = "Log(Length)",

ylab = "Residuals")

> plot(Clams$fMONTH, E, xlab = "Month",

ylab = "Residuals")

> par(op)
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Fig. 2.7 Model validation graphs. A: Fitted values versus residuals (homogeneity). B: Histogram
of the residuals (normality). C: Residuals versus length (independence). D: Residuals versus month

The first line specifies a graphical window with four panels and a certain amount
of white space around each panel. The last command par(op) sets the graphi-
cal settings back to the default values. There seems to be minor evidence of non-
normality (Fig. 2.7B), and more worrying, the spread in the residuals is not the same
at all length classes and months (Fig. 2.7A, C, D). In month 3, there is less spread
than in other months. A and C of Fig. 2.7 are similar in this case, but if we had
a larger number of explanatory variables, these panels would no longer share this
similar appearance.

The residuals play an essential part in the model validation process. Residuals are
defined as observed values minus fitted values (we call these the ordinary residuals).
However, it is also possible to define other types of residuals, namely standardised
residuals and Studentised residuals. In Appendix A, we discuss the definition of the
standardised residuals. These have certain theoretical advantages over the ordinary
residuals, and it better to use these in the code above. Studentised residuals are
useful for identifying influential observations. They are obtained by fitting a linear
regression model using the full data set, and the same regression model on a data
set in which one observation is dropped (in turn), and predicting the value of the
dropped observation (Zuur et al., 2007). We do not use Studentised residuals here.
However, if you do a good data exploration and deal with outliers at that stage, then
ordinary, standardised, and Studentised residuals tend to be very similar (in terms
of patterns).
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Instead of a visual inspection, it is also possible to apply a test for homogene-
ity. Sokal and Rohlf (1995) describe three such tests, namely the Barlett’s test for
homogeneity, Hartley’s Fmax test and the log-anova, or Scheffé-Box test. Faraway
(2005) gives an example of the F-test. It uses the ratio of variances. Panel 2.7C
suggests that the observations for log(Length) less than 2.275 have a different
spread than those larger than 2.275. The following code applies the F-ratio test, and
the output is given immediately after the code.

> E1 <- E[Clams$LNLENGTH <= 2.75]

> E2 <- E[Clams$LNLENGTH > 2.75]

> var.test(E1, E2)

F test to compare two variances data: E1 and E2

F = 0.73, num df = 161, denom df = 235, p-value = 0.039

alternative hypothesis: true ratio of variances is not

equal to 1

95 percent confidence interval: 0.557 0.985

sample estimates: ratio of variances: 0.738

The null hypothesis (H0) in this test is that the ratio of the two variances is equal
to 0, and the test suggests rejecting it at the 5% level. However, p = 0.04 is not very
convincing. On top of this, the choice for 2.275 is rather arbitrary. We can easily
fiddle around with different cut-off levels and come up with a different conclusion.
We could also use the Fmax to test whether residuals in different months have the
same spread (see page 397 in Sokal and Rohlf, 1995). We will address the same
question with the Bartlett test for homogeneity. The null hypothesis is that variances
in all months are the same. The following code and output shows that we can reject
the null hypothesis at the 5% level.

> bartlett.test(E, Clams$fMONTH)

Bartlett test of homogeneity of variances

data: E and MONTH

Bartlett's K-squared = 34.28, df = 5, p-value = <0.001

The problem with the Bartlett test is that it is rather sensitive to non-normality;
hence, one should make histograms of residuals per month. Results are not presented
here, but the R command hist(E[Clams$MONTH = = 12]) gives a bimodal
histogram.

The conclusion of the linear regression (or ANCOVA) model is that there is a sig-
nificant relationship between biomass, length, and month with a weak but significant
interaction between the length and the month. However, with a p-value of 0.02 for
this interaction term, we would have preferred to see no patterns at all in the residu-
als. Both the tests and graphical output, gave us some reasons to doubt the suitability
of this model for these data. In Chapter 4, we discuss extensions of the linear regres-
sion model that can be used to test whether we need different variances per month.
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2.3.7 Example 2; Moby’s Teeth

Figure 2.4 showed nitrogen isotope ratios in teeth of stranded whales. One of which
became famous and attracted newspaper headlines when it stranded in Edinburgh,
Scotland, and was nicknamed ‘Moby the whale’. The graph in Fig. 2.4 indi-
cates that Moby’s isotope ratios increased with age, and a linear regression was
applied to model this pattern. The following code was used to access the data,
rename the object with a very long name (TeethNitrogen) into something much
shorter, apply linear regression on Moby’s data, and make the validation graphs in
Fig. 2.8.

> library(AED); data(TeethNitrogen)

> TN <- TeethNitrogen

> M2 <- lm(X15N ∼ Age, subset = (TN$Tooth == "Moby"),

data = TN)

> op <- par(mfrow = c(2, 2))

> plot(M2, add.smooth = FALSE)

> par(op)

Figure 2.8 is the typical graphical output produced by the plot command in R.
Based on the QQ-plot in panel B, the residuals look normally distributed (if the
points are in a line, normality can be assumed). Panel D identifies potential and
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Fig. 2.8 Model validation graphs obtained by applying a linear regression model on the teeth data
from Moby. Panel A and C show residuals versus fitted values; note the clear pattern! Panel B is a
QQ-plot for normality, and Panel D shows the standardised residuals versus leverage and the Cook
statistic is superimposed as contour plots. In this case, the Cook values are small and cannot be
clearly seen
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influential observations. It is a scatterplot of leverage against residuals. Leverage
measures whether any observation has extreme values of the explanatory variables.
If there is only one explanatory variable, then a Cleveland dotplot or boxplot will
identify such points. However, an observation may have a combination of values of
explanatory variables that make it unique in terms of ‘environmental’ conditions.
None of the data exploration methods mentioned so far will detect this. If such
a point has a ‘large’ influence on the linear regression model, we may decide to
remove it. And this is measured by the Cook distance (a leave-one-out measure of
influence), which is superimposed with contour lines in panel D. We will return
to the Cook distance later (Appendix A) as the default output of R is not the best
way to present the Cook distance. In this case, there are no observations with a
Cook distance larger than 1, which is the threshold value upon one should take
further action (Fox, 2002). Summarising, leverage indicates how different an indi-
vidual observation is compared to the other observations in terms of the values of
the explanatory variables; the Cook distance tells you how influential an observation
is on the estimated parameters.

Figure 2.8A shows residuals versus fitted values. Violation of homogeneity can
be detected if this panel shows any pattern in the spread of the residuals. Panel
C is based on the same theme. However, in panel C, the residuals are square-root
transformed (after taking the absolute values) and weighted by the leverage. Both
panels A and C can be used to assess homogeneity. The spread seems to be the same
everywhere; however, panel A shows a clear problem: violation of independence.
There are in fact two violations to deal with here. The first one can be seen better
from Fig. 2.9. It shows the observed values plotted against age with a fitted linear
regression curve added. There are groups of sequential residuals that are above and
below the regression line.

The graph was obtained by

> N.Moby <- TN$X15N[TN$Tooth == "Moby"]

> Age.Moby <- TN$Age[TN$Tooth == "Moby"]
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Fig. 2.9 Observed nitrogen
isotope ratios plotted versus
age for Moby the whale. The
line is obtained by linear
regression
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> plot(y = N.Moby, x = Age.Moby,

xlab = "Estimated age Moby",

ylab = expression(paste(deltaˆ{15}, "N Moby")))

> abline(M2)

To keep the code for the plot command simple, we defined the variables
N.Moby and Age.Moby. The abline command draws the fitted regression
curve. Applying an additive model (Chapter 3) or adding more covariates may solve
the misfit. The other form of dependence is due to the nature of these data; high
nitrogen isotope ratios at a certain age may be due to high nitrogen values at younger
ages. To allow for this type of dependence, some sort of auto-correlation structure
on the data is needed, and this is discussed in Chapters 5, 6, and 7.

The relevant numerical output obtained by the summary(M2) command is
given by

Estimate Std. Error t-value p-value

(Intercept) 11.748 0.163 71.83 <0.001

Age.Moby 0.113 0.006 18.40 <0.001

Residual standard error: 0.485 on 40 degrees of freedom

Multiple R-Squared: 0.894, Adjusted R-squared: 0.891

F-statistic: 338.4 on 1 and 40 DF, p-value: < 0.001

The output shows the estimated intercept and slope (plus standard errors, t-values
and p-values). We also get information on R2 and the adjusted R2 (the latter one can
be used to select the best model if there are any non-significant terms in the model),
the square root of the variance (residual standard error), and the F-statistic (which
is testing the null hypothesis whether all slopes, one is this case, are equal to zero).
The estimated model is given by

yi = 11.748 + 0.113 × agei

The estimated slope and intercept are significantly different from 0 at the 5%
level. The model explains 89% of the variation; the estimator for σ is equal to
s = 0.486. But the problem is that we still have to reject this model because there is
a clear violation of independence. Solutions will be given in Chapters 6 and 7.

2.3.8 Example 3; Nereis

In the third example, we present the results of a linear regression model applied
on the Nereis data, presented earlier in this chapter. The concentration is modelled
as a function of nutrient, biomass, and their interaction. This can also be called a
2-way ANOVA with interaction. The following R code accesses the data, defines



2.3 Violating the Assumptions; Exception or Rule? 29

Biomass

R
es

id
ua

ls

0 0.5 1 1.5 2

0.
0

0.
5

1.
0

1 2 3
Nutrient

R
es

id
ua

ls

–0
.5

–1
.5

–1
.5

–1
.0

0.
0

0.
5

1.
0

–0
.5

–1
.0

Fig. 2.10 Model validation graphs for the Nereis data showing heterogeneity. Residuals are plotted
versus biomass and nutrient

the explanatory variables biomass and nutrient as factors, applies linear regression,
and plots the validation graphs in Fig. 2.10. Note that homogeneity is violated!

> library(AED); data(Nereis)

> Nereis$fbiomass <- factor(Nereis$biomass)

> Nereis$fnutrient <- factor(Nereis$nutrient)

> M3 <- lm(concentration ∼ fbiomass * fnutrient,

data = Nereis)

> drop1(M3, test = "F")

> op <- par(mfrow = c(1, 2))

> plot(resid(M3) ∼ Nereis$fbiomass, xlab = "Biomass",

ylab = "Residuals")

> plot(resid(M3) ∼ Nereis$fnutrient,

xlab = "Nutrient", ylab = "Residuals")

> par(op)

The numerical output obtained by the drop1 command is printed below
and shows that the biomass-nutrient interaction term is significant at the 5%
level.

Single term deletions
Model: concentration ∼ fbiomass * fnutrient

Df Sum of Sq RSS AIC F value Pr(F)
<none> 13.630 -23.746
fbiomass:fnutrient 8 11.553 25.183 -12.121 3.1785 0.0099

However, the boxplot of (i) residuals versus nutrient and (ii) residuals ver-
sus biomass in Fig. 2.10 shows a clear violation of homogeneity. Applying a



30 2 Limitations of Linear Regression Applied on Ecological Data

transformation on concentration may solve this problem. The disadvantage of a
transformation is that we are changing the type of relationship between response
and explanatory variables. So, again we need to reject the linear regression model for
these data.

2.3.9 Example 4; Pelagic Bioluminescence

In Gillibrand et al. (2007), pelagic bioluminescence along a depth gradient in the
northeast Atlantic Ocean is analysed. Figure 2.11 shows an xyplot from the lattice
package. Each panel represents a station. The underlying questions are (i) how to
model the bioluminescent–depth relationship and (ii) how to deal with the data of
difference stations. The following code was used to read the data and make the lattice
panel.

> library(AED); data(ISIT)

> ISIT$fStation<- factor(ISIT$Station)

> library(lattice)

> xyplot(Sources∼ SampleDepth | fStation, data= ISIT,

xlab= "Sample Depth", ylab= "Sources",

strip= function(bg= 'white', ...)

strip.default(bg= 'white', ...),

panel= function(x, y) {
panel.grid(h= -1, v= 2)

I1<- order(x)

llines(x[I1], y[I1], col= 1)})

You can see this code is slightly more complicated than used for Fig. 2.4. In this
code, we used a panel function that automatically splits up the data by station. When
R enters this panel function, the x and the y variables are the data for one particular
station. We then have a range of options in the way we can display this x and y data.
First, we add a grid using the panel.grid command. If you don’t like the grid,
just remove this command. The I1 <- order (x) determines the order of age
as we did not sort the data before importing into R. Finally, we added lines between
points with sequential ages. Omitting the order command and removing the [I1]
in the llines function produces a spaghetti plot.

There is no point in applying a linear regression model with Sources as the
response variable and Depth and Station as explanatory variables (plus an inter-
action between them) because the relationships are not linear and the variation per
station differs. Perhaps it is better to consider station as a random effect (Chapter 5).
Another problem is that depth can be seen as a spatial gradient. Hence, there may be
spatial correlation along the depth gradient. In Chapter 5, we discuss random effect
models, and in Chapter 7 spatial correlation for smoothing models. A full analysis
of this data set is presented in Chapter 17.
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Fig. 2.11 Pelagic bioluminescence (labelled as Sources) along a depth gradient in the northeast
Atlantic Ocean. Each panel represents a station

2.4 Where to Go from Here

The data exploration should filter out any typing mistakes (typos), identify possible
outliers and the need for a data transformation, and provide some ideas about the
follow up analyses. As for typos, these should obviously be corrected before contin-
uing with any analysis, but do not apply a transformation on the response variable
yet unless there are strong reasons to do so. Some of the methods discussed in later
chapters may be able to deal with (groups) of extreme observations or heterogene-
ity. Many books will tell you to routinely apply a data transformation to linearise
the relationship. Well, if you are particular fond on linear regression then yes, but
(generalised) additive (mixed) modelling is especially designed to model non-linear
relationships. Even heterogeneity, as for example encountered in Fig. 2.1B can be
dealt with (as will be explained in Chapter 4); so you do not need to apply a transfor-
mation to stabilise the mean-variance relationship, provided you are willing to read
the rest of this book. The only thing we cannot solve with any of the techniques dis-
cussed in later chapters is observations with extreme explanatory variables. If this
happens for your data, then a transformation on the explanatory variable(s) could
well be justified at this stage.
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The original aim of this chapter was to simply illustrate the linear regression
model for an ecological data set and discuss the numerical and graphical output.
However, in preparing this book, we had access to about 15 data sets, and in Zuur
et al. (2007), we had access to a further 20 data sets. In none of these real data
sets could we find a non-trivial example for a linear regression model for which
all assumptions held. This clearly identifies the limitation of linear regression for
analysing ecological data. Hence, our choice of the title of this chapter.

So, what can we do? The problem of heterogeneity can be solved by either
allowing for different variances in the linear regression model (using generalised
least squares estimation) or using a different distribution and model structure (Pois-
son, negative binomial and Gamma distributions in GLM); the dependence prob-
lem requires the use of models that allow for more flexibility than regression (e.g.
smoothing methods) and a model for the error structure (e.g. temporal, spatial cor-
relation, or along another gradient like age or depth). We will also need to consider
nested data and random effects. Taken together, all these techniques lead to mixed
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Fig. 2.12 Overview of all the chapters in this book. Linear regression is discussed in Appendix A.
Additive modeling, generalised least squares (GLS), and mixed modelling techniques are presented
in Chapters 4, 5, 6, and 7. Chapter 8 contains an explanation of the Poisson, negative binomial,
Bernoulli, binomial, and zero-truncated distributions. GLM and GAM models are discussed in
Chapters 9, 10, and 11, and finally, Chapters 12 and 13 contain GEE, GLMM, and GAMM. Asso-
ciated case studies are printed outside the triangle. Chapter 23 contains an application of Markov
Chain Monte Carlo (MCMC), which can be used as an alternative estimation technique or if the
correlation structure is more complicated than the R functions for mixed modeling, GLMM and
GAMM can cope with
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modelling approach, and if combined with GLM and GAM, to generalised linear
mixed modelling (GLMM) and generalised additive mixed modelling (GAMM).

Chapter 4 shows how we can deal with heterogeneity in linear regression and
smoothing models, random effects for nested data are introduced in Chapter 5, and
temporal and spatial correlation structures are discussed in Chapters 6 and 7. In
Chapter 8, we introduce different distributions for count data, binary data, propor-
tional data, and zero inflated count data. These are then used in Chapters 9, 10,
and 11. Finally, Chapters 12 and 13 discuss how we can incorporate correlation
structures and random effects in models for count data, binary data, and propor-
tional data. See Fig. 2.12 for a schematic overview.

Before reading on, we strongly advise to read Appendix A as it provides a more
detailed discussion on linear regression. It is essential that you are familiar with all
steps discussed in this appendix.




